Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета
▪️Сложная модель на маленьком, но качественном датасете: — Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах. — Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.
▪️Простая модель на большом, шумном датасете: — Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия. — Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.
▪️ Подводные камни и крайние случаи: — Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.
— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.
— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.
Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета
▪️Сложная модель на маленьком, но качественном датасете: — Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах. — Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.
▪️Простая модель на большом, шумном датасете: — Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия. — Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.
▪️ Подводные камни и крайние случаи: — Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.
— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.
— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.
Библиотека собеса по Data Science | вопросы с собеседований from fr